
Bootstrapping Communications into an Anti-Censorship System

Patrick Lincoln1, Ian Mason1, Phillip Porras1, Vinod Yegneswaran1, Zachary Weinberg2,
Jeroen Massar3, William Simpson3, Paul Vixie3, and Dan Boneh4

1SRI International 2Carnegie Mellon University / SRI 3Internet Systems Consortium 4Stanford University

Abstract
Adversary-resistant communication bootstrapping is

a fundamental problem faced by many circumvention
(anti-censorship) systems such as Tor. Censoring regimes
actively harvest and block published Tor entry points and
bridge nodes. More recently, some countries have resorted
to reactive (follow-up) probing of the destination hosts
of outbound encrypted traffic to identify unpublished Tor
nodes. We present the design of a new architecture for
bypassing censorship, called DEFIANCE, that extends
Tor with resilience to both active harvesting and network
scanning attacks. The first goal is accomplished using
the DEFIANCE Rendezvous Protocol (RP), and the sec-
ond is achieved using a novel handshake that we call
Address-Change Signaling (ACS). We describe prototype
implementations of both components, discuss the limits
of our architecture, and evaluate what it would take for
a determined adversary to defeat our system. While we
develop our prototype components over Tor, their design
can be easily extended to other circumvention systems.

1 Introduction
Although originally designed as an anonymity system,
Tor is quietly gaining prominence as a tool for bypassing
Internet censorship. Tor uses onion routing to guarantee
traffic anonymity; that is, Tor interposes an intermediate
set of three relays with corresponding onion layers of
encryption. Each relay learns only of its previous and
next hops, and no relay learns both the origin and destina-
tion [8]. As Tor was designed to be an anonymity system
and not a circumvention system, adversaries blocking all
use of Tor is outside the scope of its threat model. Hence,
Tor traffic is often subjected to indiscriminate (wholesale)
blocking by censorship regimes.

There are two common techniques an adversary might
adopt for blocking use of Tor within their network. The
first and most common form of attack involves entry point
blacklisting. For example, the list of Tor entry node IP
addresses is publicly available and is trivially blocked to-

day by many countries practicing adversarial filtering. To
counter this attack, Tor introduces the concept of bridge
nodes: entry nodes that are not listed in the main Tor
directory [4]. To obtain a bridge address, users either visit
a website or send an email from a gmail address to an
auto-responder (bridges@torproject.org). However,
it is not difficult for a determined, well-funded adver-
sary (such as a nation-state) to harvest a list of bridge IP
addresses by the same means. Currently, Tor bridge ad-
dresses distributed in the above forms are all inaccessible
from China. This bootstrapping problem, that we try to
address using rendezvous strategies described in this pa-
per, is a limitation that is fundamental to all circumvention
systems.

The second form of blocking involves the use of pro-
tocol signatures that distinguish Tor encrypted Transport
Layer Security (TLS) packets from other applications
that use the TLS protocol. Such tactics have been suc-
cessfully employed by censoring countries on multiple
occasions [5, 16, 18]. While the Tor developers have been
able to modify the software each time to remove the dis-
tinguishing signature, this is an arms race. This has also
stimulated the development of proactive defenses in the
form of pluggable transports that broadly add dress such
tactics, such as Obfsproxy [6] which obscures all cleartext
patterns in Tor traffic.

Additionally, adversaries may use both active and re-
active network probing techniques to uncover and block
unpublished entry points. As an example of a reactive
probing attack, recently the Chinese Great FireWall was
observed conducting two follow-up probes for each out-
bound port TCP/443 connection. While the target of the
first set of probes with garbage binary data was unknown,
the second set specifically targeted Tor by performing an
SSL negotiation, an SSL renegotiation and successfully
building a one-hop Tor circuit [21]. Such attacks motivate
the need for some form of access control before clients
can validate the existence of a Tor bridge and obtain ac-
cess to Tor services.

1

!"#$%#"&'(#$

!"#$)*+(,-$

./0123)/$
)*+(,-45+6($
7#"89$

./0123)/$
:(,6(;<"='$
2>>*+?@A",$

./0123)/$
B@-(&@9$

./0123)/$
%#+6C(47#"89$

!"#$%#+6C($

D"6EF#((6"D$
:(,6(;<"='$$
5(#<(#'$

./0123)/$
$3/!$

0@?-"#9$

27:26G$
5HI$

27:7$

$$$$$J2)5$:(6+#(?-K$
$$%#+6C($:(*@9$I+'-$ $$5"?L(-$0"#&@#6$

!"#$M+66(,$5(#<+?($

./0123)/$N'(#$2C(,-$./0123)/$%#+6C($

Figure 1: DEFIANCE Architecture Overview

Our goal is to extend Tor with a tunneling service that
is resilient to active and passive filtering. To address the
aforementioned problems, we introduce the concepts of
DEFIANCE Rendezvous Protocols (RP), Address Pools
(AP), and Address-Change Signaling (ACS). The DEFI-
ANCE rendezvous process assigns IP address contacts
from the Address Pool to a user (or small group of users).
ACS specifies that these contacts must be used in a partic-
ular way and in a particular order or these bridge relays
either will not respond to the contact or will return an
innocuous response. Below, we describe our architecture
and these concepts in greater detail.

2 Architecture
The communications bootstrap protocols described in this
paper are part of a broader system, called DEFIANCE.
Its goal is to make Tor resistant to all common filtering
attacks. Figure 1 illustrates the overall DEFIANCE frame-
work. The DEFIANCE User Agent running on the user’s
machine is a Tor client augmented with support for DEFI-
ANCE protocols. Rendezvous servers reveal DEFIANCE
Gateway addresses via the DEFIANCE Rendezvous Pro-
tocol. Gateways respond to Address-Change Signaling by
granting access to a DEFIANCE Bridge. Bridges provide
connectivity to the existing Tor network and thence to the
unfiltered Internet.

DEFIANCE Rendezvous Protocol. The DEFIANCE
Rendezvous Protocol specifies a series of network interac-
tions and local calculations that ultimately reveal to each
DEFIANCE user one of the many addresses of a DEFI-
ANCE Gateway. Rendezvous is designed to be straightfor-
ward for honest users, but unacceptably expensive for an
adversary who seeks to learn all of a gateway’s addresses;
it involves both proof-of-life and proof-of-computational-
work challenges. The design anticipates that the tasks in-
volved will periodically have to be made more difficult as

adversaries gain sophistication. A user who successfully
carries out rendezvous will learn a Network Entry Ticket
(NET) that tells them how to perform Address-Change
Signaling and gain access to a set of bridges.

In this paper, we describe a simple instantiation of a
rendezvous service that we refer to as mod_freedom, an
Apache module run by volunteer webservers. Rendezvous
servers periodically probe the DEFIANCE NET Factory
(a Tor hidden service) to obtain network entry tickets.
In practice, multiple realizations of rendezvous services
might be spawned and co-exist to increase the level of
effort on the censor.

Address Pools. Address Pools are diverse blocks of
IPv4 or IPv6 addresses, operated by agencies that already
possess such blocks and wish to assist in circumvention.
Address Pools frustrate address blocking by sheer size
and diversity: any address in a pool can be (perhaps only
briefly) the address of a DEFIANCE Gateway. Each
Gateway handles a local or regional address pool consist-
ing of many hundreds of small IP address blocks (with
4 to 256 addresses per block). A centralized service,
the Address Pool Registration Administrative database
(APRAdb), maintains a registry of active addresses, keeps
track of current usage of addresses within each pool, and
coordinates the gateways with the NET Factory. DE-
FIANCE User Agents and mod_freedom servers never
communicate directly with the APRAdb.

Address-Change Signaling. Address-Change Signal-
ing (ACS) prevents adversaries from actively probing for
DEFIANCE Gateways. Although all service responses
and protocols have a fingerprint, this design attempts to
mimic other wide-spread protocols and services, hiding
the addresses in plain sight.

This term is similar to traditional frequency-change sig-
naling, but here IP addresses correspond to frequencies.
Using the information in a NET, an ACS client makes
short-lived connections to DEFIANCE Gateways listen-
ing on a sequence of IP addresses. If each connection is
timed correctly and transmits the proper authentication,
the gateway will reveal values for the next connection.
Otherwise, the gateway produces an innocuous cover re-
sponse.

Ultimately, the gateway reveals contact information for
a DEFIANCE Bridge that also has ephemeral addresses
provisioned from the Address Pools; this bridge can be
used to relay to the Tor network.

Traffic Camouflage. Once the client establishes con-
tact with a DEFIANCE Bridge, its traffic is camouflaged
to prevent the adversary from noticing characteristics of
the Tor protocol. While a discussion of specific camou-
flage techniques is outside the scope of this paper, its
objective is to steganographically transform the encrypted
Tor stream into one of many unencrypted protocols (e.g.,

2

HTTP, RTP) in common use on the public Internet. One
means to accomplish this objective is through the use of
Tor pluggable transports such as Obfsproxy [6], Skype-
morph [12] and StegoTorus [20].

3 DEFIANCE Rendezvous
The DEFIANCE rendezvous protocol (RP) lets a user in
a censored region of the network receive a small amount
of information, leading to the DEFIANCE gateways,
from servers outside the censored region. Since a censor
may control a non-negligible fraction of our clients, it
should be difficult for a client to automatically harvest
a large number of entry point addresses. Thus an ideal
rendezvous scheme would require human involvement
(proof-of-life), machine time (proof-of-work), and artifi-
cial delays to discover multiple entry points. There is a
fundamental trade-off here between system usability and
resilience to harvesting attacks.

The puzzles limit the rate at which the censor can
learn the identity of new entry points. Our goal is to
produce an entry point pool capable of maintaining a
positive creation to discovery rate. Let us assume that
the adversary commits three 8-hour shifts of 100 humans
(round-the-clock) to collect DEFIANCE entry points
for blacklist generation. Given a 60-minute average
rendezvous point discovery protocol that mixes a series
of human and machine challenges, we can anticipate
the adversary discovering a minimum of 2400 entry
points per day. If we assume that DEFIANCE manages
a static entry pool of 10,000 addresses, the adversary
could hope to reach closure LOE (level of effort) in
about 19 days. More generally, if our pool size is N and
the adversary performs K full rounds of the rendezvous
protocol (providing that adversary with K random
entry points), then a standard balls-and-bins argument
shows that the expected number of entry points obtained is

E[x] = N −N(1− 1
N

)K (1)

Hence, performing N full rounds of the above ren-
dezvous protocol will reveal only 63% of our entry points
(e.g., given a pool size of 1000 entry points, then 1000
rounds of the rendezvous protocol will yield, on average,
only 630 entry points), which has little impact on the
system. To discover all of our entry points the censor
will need to conduct the full rendezvous protocol (N ln
N) times in expectation (known as the coupon collector’s
bound [17]). We can also employ out-of-band signaling
including word-of-mouth social networking to share open
entry points among small groups of mutually trusting end
users. That is, even if a majority of DEFIANCE entry
points are blocked, the user community can share knowl-
edge of the currently available entry points. Thus, it is

imperative for the adversary to achieve Closure LOE in
order to ensure DEFIANCE is inoperable.

Various rendezvous protocols are being developed to-
day, by the Tor project and others; see [11] for more
details. We present here our design for a rendezvous pro-
tocol that can be “piggy backed” on existing Web servers.
Our system goals are to (i) have a large and unpredictable
contact surface; (ii) minimize deployment and manage-
ment overhead; (iii) be straightforward for end users; and
(iv) be as robust as possible against adversaries who seek
to harvest large numbers of addresses (and block them).

We envision that, at any given time, there would be
thousands of operational mod_freedom webservers, many
of which are ideally collocated with productive websites.
This list of servers would be distributed in pieces through
many channels including public websites, social networks
and the DEFIANCE software itself. In addition, DE-
FIANCE users may learn of new mod_freedom servers
during the rendezvous process. While it would be arbi-
trarily difficult for a censor to obtain a complete list of
operational mod_freedom servers, our expectation is that
it would be even more painful for them to block use of all
these websites.

The proposed RP, as currently implemented, consists
of three separate components:

1. The DEFANCE User Agent is a client-side desktop
application that retrieves and deciphers NET payloads
from a mod_freedom server.

2. The Apache mod_freedom module acts as a middle-
man, maintaining a supply of NET payloads that it serves
in response to valid RP requests. It has no detailed knowl-
edge of NET payloads other than how to replenish its
supply, verify a NET factory digital signature, and how
to recognize a bona fide NET request. Thus an adversary
running a mod_freedom server would have little to gain,
other than the daily supply of NETs it would intercept.

3. The NET factory constructs and supplies NET pay-
loads to mod_freedom servers. Since mod_freedom
webservers could be run by adversaries, a potential con-
cern is that they could launch distributed denial of service
attacks against the NET factory. Hence, we implement
the NET factory as a Tor hidden service to make it less
conspicious. The NET factory also functions as a Private
Key Generator, PKG, for the identity-based encryption
used in the RP. It can throttle NET supply to disreputable
mod_freedom servers, as well as reward reputable ones.
The NET factory is also the only component that deals
directly with the APRAdb.

3.1 An Apache Module for DEFIANCE Rendezvous

The Apache module, mod_freedom, hooks into the
ErrorDocument handler; that is, the mechanism for gen-

3

erating HTTP “404 Not Found” error responses. If it
detects a special pattern in a GET request that would oth-
erwise have produced an error, it sends back an encrypted
NET, that we call a NET payload and describe below.
Note, while we trap “404 Not Found” errors, the actual
responses are encrypted NETs sent back as “200 OK”
messages. The random-looking encrypted strings that are
part of both the request and response must be stegano-
graphically encoded to resemble legitimate requests and
responses (a discussion of steganography strategies is out-
side the scope of this paper). An alternative design choice
is to simply use the cookie and set-cookie fields in the
HTTP header.

Modules may be added to any compatible Apache
server without rebuilding the entire server; this facilitates
deployment. By inserting our protocol into what would
otherwise have been error messages, we ensure that our
module does not interfere with the normal operation of
the hosting website. By building on the most popular
web server in use today, our rendezvous protocol can be
deployed on a very large number of hosts, rendering it
infeasible to block all rendezvous service.

3.2 DEFIANCE Rendezvous Requests and Re-
sponses

The DEFIANCE User Agent uses a mod_freedom
server’s URL to construct a GET request to that server
for an image, with a message to mod_freedom embed-
ded in the URL. This message contains the actual request
and a symmetric key with which to encrypt the reply,
all encrypted using the public key (which is simply the
server’s name) of the server using the Boneh-Franklin
IBE crypto-algorithm [1]. The choice of IBE here is im-
portant, because it eliminates the need for a method of
distributing mod_freedom public keys.

The DEFIANCE User Agent is preconfigured with pub-
lic keys for particular sites that implement mod_freedom.
Using these keys, it crafts a GET request for an image,
with a message to mod_freedom embedded in the URL.
This URL is designed to appear relatively natural (al-
though full of hexadecimal numbers), but be unlikely to
correspond to real content. It contains a request for a NET
payload, and a key with which to encrypt the reply, all
encrypted with the appropriate public key.

Upon receiving this request, mod_freedom does reply
with an image; however, steganographically embedded in
this image is a NET payload, encrypted using the short-
lived key that was embedded in the request. The user
agent extracts the NET from the payload and guides the
user through the remainder of the rendezvous process.

3.3 Armored NET Payloads

The adversary can potentially harvest NETs either di-
rectly from the NET factory by masquerading as a mod_

freedom server, or by connecting to lots of rendezvous
servers. We impose rate limits and credential checks at
both levels, but it is still plausible that the adversary can
build up a fairly large list in a short time. Therefore, NETs
are encapsulated in payloads that require significant hu-
man and computational effort to decode. Therefore, an
adversary who has obtained many of them should not be
able to decode them faster than we can change gateway
addresses.

Figure 2 illustrates the structure of a NET payload.
Each layer (nested box in the diagram) requires the user,
or the user-agent, to carry out some task in order to de-
crypt the next layer. Currently, there is a fixed sequence
of three layers surrounding the NET payload.

The outermost layer is just the transport encryption
done by mod_freedom, and not really considered part of
the payload. To remove this layer, the user-agent must
reverse the steganography and decrypt the “image” reveal-
ing the actual NET payload. The first actual payload layer
contains the digital signature of the NET factory and must
be verified to ensure that the payload was not served by
a malicious mod_freedom server. The second layer is
“proof of life:” presently, a CAPTCHA-style image of a
decryption key that the user must read and type in. Finally,
the third layer is “proof of work:” a computational puzzle
that can be decrypted only with a small (but nontrivial)
amount of CPU time. Under all these layers is the NET
provisioning (described in section 4), and potentially an
updated list of mod_freedom servers for the client to use
next time.

The payload format is extensible, allowing additional
layers or changes of the tasks in the future, should this be
necessary to maintain harvesting resistance.

4 Address-Change Signaling
Address-Change Signaling (ACS) securely inhibits an
active scan by network censors seeking to locate, identify,
and/or block DEFIANCE resources. To avert scanning
and avoid blocking, it is necessary that the IP addresses
used by servers, proxies, and tunnels vary frequently. An
inventory of IP address assets are rotated in and out of
use continuously.

Each DEFIANCE user must communicate with sev-
eral IP addresses in a specific sequence. This ensures
that a given incoming connection came from somebody
possessing the NET provisioning details and knowing
the expected protocol to access each address. A network
censor having only the suspicion that some block of IP ad-
dresses are used for censorship bypass (but not possessing
complete NET provisioning details) will find only normal
commodity servers or empty space.

NET provisioning is provided to the user via the Ren-
dezvous Protocol. These provisioning details allow the
DEFIANCE User Agent to perform a multi-step address-

4

Steganography, encryption, digital signature

Proof of Life (CAPTCHA)

Proof of Work (computational puzzle)

Network Entry Ticket

Updated mod_freedom server list

Figure 2: Structure of NET Payloads delivered by mod_
freedom servers

{
"initial" : "192.0.2.11",
"redirect" : "192.0.2.22",
"wait" : 95,
"window" : 112,
"passphrase" : "OUST COAT FOAL MUG BEAK TOTE"

}

Figure 3: Provisioning information in JSON format.

change signaling “dance”. Upon successful completion
of the dance steps, the user application is communicating
with an otherwise hidden DEFIANCE Bridge.

Details of the Address Pool Registration Protocol
(APRP) for management and synchronization are beyond
the scope of this paper. Only relevant details of NET
provisioning are described, together with steps the DEFI-
ANCE User Agent must complete.

4.1 ACS NET Provisioning

Each user (or small group of users) is provided with a pair
of contact addresses, a pair of timing values in seconds,
and a secret passphrase. Figure 3 shows an example,
formatted in JSON [3].

Although there is no expiration field, the validity of
this contact information is limited in time. The distribu-
tion mechanism may also request a delay for activating
the contact addresses, or a longer period of validity. By
default, these contacts will be available immediately, and
valid for 24 hours.

Both (initial and redirect) contacts are standard string
forms for IP addresses. These addresses should not be
Domain Names for the actual servers, as this could leave
an audit trail, and/or permit an adversary to modify DNS
values in transit.

URL scheme names are not included in the contact
strings. When using the address, the chosen URL scheme
name must be appropriate to the expected contact. The
default implementation uses “http://” and “https://” for the
Initial Contact and Redirect Contact, respectively. In the
future, the Redirect scheme could also be “http://” with a
suitable camouflage protocol that provides confidentiality,
mutual authentication, and Perfect Forward Secrecy.

Timing (wait and window) delays serve as a “security
by obscurity” safeguard against detection. The values
determine timing between contacts, allow sufficient time
for contact to occur, and provide a time limit on replays.
These timing parameters are different for each user (or
small group of users) sharing the contact address pair.

The passphrase uses the [RFC2289] One-Time Pass-
word System dictionary. This provides a 64-bit secret key
with an additional 2 bits of checksum. The passphrase pre-
vents adversaries from indirect discovery of the ephemeral
Bridge Relay(s). An interloper who can intercept or mod-
ify a TLS connection will fail the final verification.

4.2 ACS “Dance” Steps

A DEFIANCE User Agent begins by contacting the initial
address using HTTP. A time-dependent HTTP Set-Cookie
is returned to the user agent, along with innocuous con-
tent.

The user agent delays for wait seconds, then contacts
the redirect address using HTTPS. The time-dependent
verification key used for the ciphersuite is generated
from the passphrase string and the HTTPS Hello ran-
dom (timed) values. The encrypted response contains a
set of bridge relays, each having an expiration, an identity,
a secret, a TCP port, and an IP address.

At each step of this dance, the APRAdb maintains
state about the potential dance-in-progress. Connections
coming to the wrong address, or outside the allowed wait
and window delays, or using the wrong verification key,
are answered innocuously (or not answered at all).

4.3 ACS Implementation

ACS is comprised of several separate components: the
aforementioned APRAdb, one or more NET facto-
ries, multiple regional DEFIANCE Gateway daemons
(dgw), and a corresponding lightweight Apache module
(mod_dgw).

A redundant set of central APRAdb servers maintain a
database of the Address Pool(s) used by widely distributed
regional DEFIANCE Gateways. PostgreSQL is used for
caching of contacts and outstanding listeners in both the
APRAdb and dgw.

Each NET Factory and DEFIANCE Gateway (dgw)
communicate with the APRAdb using the Address Pool
Registration Protocol (APRP). Consolidating the DEFI-
ANCE Gateway logic inside a separate daemon, the dgw

5

process could be run on another machine or serve multi-
ple webservers with variable content from the same ma-
chine via different IP addresses. Separating this logic also
allows restart of each component without affecting the
operation of the others, and avoids having to debug a fully
running Apache instance along with the complexities of
its multi-processing modules.

We use a custom Apache2 module (mod_dgw) to inter-
cept requests to the dgw process. Our objective is to make
the client-facing server as similar to a normal webserver
as possible. The webserver loaded with mod_dgw module
will perform special handling on ACS requests while the
rest of the system is identical to a normal webserver setup.
mod_dgw installs itself at the head of the Apache internal
module handler list. If mod_dgw sees an anticipated re-
quest, it forwards details of the request to its dgw. dgw
returns further instructions to mod_dgw: remain silent,
prepare innocuous content, or return specific content.

5 Discussion
The framework as described above is in its infancy. There
are many areas for additions and improvements.

Using mod_freedom as a rendezvous strategy has sev-
eral strengths. It is a minimally invasive extension to
an existing web server, and should have minimal per-
formance impact. It is easy to install, and requires al-
most no day-to-day maintenance. It also provides ample
techniques to prevent the harvesting of NETs. It does
not require mutual trust between DEFIANCE and web
server operators. An adversarial web server running mod_
freedom will be able to harvest only their daily allotment
of NET payloads, and will still have to go through the
time-consuming process of proof of life and proof of work
to unpack them. Consequently, simply partitioning the
NETs according to the supplied web servers allows for the
reputation tracking of mod_freedom servers themselves.

Some other obvious extensions include mechanisms to
associate reputations with users and tailor our responses,
such as the level of difficulty to unwrap, according to a
particular reputation. We can also deliver more than just
a NET; for example, for users with a high reputation we
could also deliver an additional list of servers running
mod_freedom.

6 Related Work
Open proxies such as DynaWeb [9] and Ultrasurf [19]
that are commonly used for circumvention provide no
anonymity guarantees to end users. Proxies also have
publicly advertised and relatively stable IP addresses, so
it is easy to block them in an address filter. To address
this, Köpsell and Hillig proposed these covert proxies as
an add-on to their AN.ON service [15]. The Tor Project
calls them “bridge relays” and has deployed them exten-
sively [4, 7]. Browser-hosted proxies [11] aim to make

so many proxies available that it would be hopeless for a
censor to block them all; there is still a global directory,
but its entries are highly dynamic and the service is piggy-
backed on a cloud-storage service that is so widely used
that the censor will hesitate to block it. Keyspace hop-
ping [10] takes a similar approach to the proxy discovery
problem, where each proxy only responds to a subset of
clients, that possess certain unforgeable information, at
any given time. While keyspace hopping considers the
client’s IP network to be this identifier, our identifier is
the NET that is obtained through rendezvous.

Collage [2] is a scheme for steganographically hiding
messages within postings on sites that host user-generated
content, such as photos, music, and videos. Such strate-
gies are limited in the bandwidth they can support, but
might be useful as rendezvous schemes. Telex [22], De-
coy Routing [14], and Cirripede [13] take a different
approach to address-filtering resistance: TCP streams are
covertly “tagged” to request that a router somewhere on
the path to the overt destination divert the traffic to a
covert alternate destination.

7 Conclusion

The Tor anonymity system is currently subject to entry-
point blacklisting and reactive network probing attacks
by filtering adversaries. In this paper, we introduced the
DEFIANCE framework and described components that
address these attacks. Our design is a straightforward ex-
tension of Tor and is flexible to accommodate additional
Rendezvous Protocols and bridge distribution strategies.
We believe that Rendezvous Protocols when combined
with large, ephemeral Address Pools offer signficant re-
silience against entry-point harvesting attacks. In addi-
tion, Address-Change Signaling offers potential resilience
against active and follow-up probing attacks observed re-
cently. We have prototype implementations of all three
components, which we hope to deploy and integrate with
Tor client software in the near future.

8 Acknowledgments

We acknowledge helpful comments from Drew Dean,
Roger Dingledine, and Andrew Lewman. This mate-
rial is based upon work supported by the Defense Ad-
vanced Research Projects Agency (DARPA) and Space
and Naval Warfare Systems Center Pacific under Contract
No. N66001-11-C-4022. Any opinions, findings, and con-
clusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the Defense Advanced Research Project Agency
or Space and Naval Warfare Systems Center Pacific. Dis-
tribution Statement “A:” Approved for Public Release,
Distribution Unlimited.

6

References
[1] D. Boneh and M. Franklin. Identity based encryption from

the Weil pairing, 2003.

[2] S. Burnett, N. Feamster, and S. Vempala. Chipping Away
at Censorship Firewalls with User-Generated Content. In
Proceedings of the 19th USENIX Security Symposium,
2010.

[3] D. Crockford. The application/json Media Type for
JavaScript Object Notation (JSON). RFC 4627, 2006.

[4] R. Dingledine. Behavior for bridge users, bridge relays,
and bridge authorities. Tor Proposal #125, 2007.

[5] R. Dingledine. Iran blocks Tor; Tor releases same-day fix.
Tor Project official blog, 2011.

[6] R. Dingledine. Obfsproxy: the next step in the censorship
arms race. Tor Project official blog, 2012.

[7] R. Dingledine and N. Mathewson. Design of a blocking-
resistant anonymity system. Technical report, The Tor
Project, November 2006.

[8] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
Second-Generation Onion Router. In Proceedings of the
13th USENIX Security Symposium, pages 303–320, 2004.

[9] Dynamic Internet Technology Inc. DynaWeb. Proxy
service, 2002.

[10] N. Feamster, M. Balazinska, W. Wang, H. Balakrishnan,
and D. Karger. Thwarting Web Censorship with Untrusted
Messenger Discovery. In Privacy Enhancing Technologies,
2013.

[11] D. Fifield, N. Hardison, J. Ellithorpe, E. Stark, R. Dingle-
dine, P. Porras, and D. Boneh. Evading Censorship with
Browser-Based Proxies. In PETS, 2012.

[12] Hooman Mohajeri Moghaddam and Baiyu Li and Mo-
hammad Derakhshani and Ian Goldberg. Skypemorph:
Protocol obfuscation for tor bridges. Technical report,
University of Waterloo, 2012.

[13] A. Houmansadr, G. T. Nguyen, M. Caesar, and N. Borisov.
Cirripede: Circumvention infrastructure using router redi-
rection with plausible deniability. In Proceedings of the
18th ACM conference on Computer and Communications
Security, pages 187–200, 2011.

[14] J. Karlin, D. Ellard, A. Jackson, C. E. Jones, G. Lauer,
D. P. Makins, and W. T. Strayer. Decoy routing: Toward
unblockable internet communication. In USENIX Work-
shop on Free and Open Communications on the Internet,
2011.

[15] S. Köpsell and U. Hillig. How to Achieve Blocking Re-
sistance for Existing Systems Enabling Anonymous Web
Surfing. In Proceedings of the 2004 ACM workshop on
Privacy in the electronic society, pages 47–58, 2004.

[16] N. Mathewson. Tor and Circumvention: Lessons Learned.
Invited talk at the 4th USENIX Workshop on Large-Scale
Exploits and Emergent Threats (LEET), 2011.

[17] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge: Cambridge University Press, 1995.

[18] Runa. An update on the censorship in Ethiopia. Tor Project
official blog, 2012.

[19] UltraReach Internet Corp. Ultrasurf. Proxy service, 2001.

[20] Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeis-
ter, S. Cheung, F. Wang, and D. Boneh. StegoTorus: A
Camouflage Proxy for the Tor Anonymity System. In Pro-
ceedings of the 19th ACM conference on Computer and
Communications Security, 2012.

[21] T. Wilde. Knock Knock Knockin’ on Bridges’ Doors. Tor
Project official blog, 2012.

[22] E. Wustrow, S. Wolchok, I. Goldberg, and J. A. Halderman.
Telex: Anticensorship in the Network Infrastructure. In
Proceedings of USENIX Security Symposium, 2011.

7

