
SFS: A Simple File System for Teaching Parallelism
in Computer Systems

Brian P. Railing
Computer Science Dept.

Carnegie Mellon University
Pittsburgh, USA
bpr@cs.cmu.edu

Lukas Kebuladze
Computer Science Dept.

Carnegie Mellon University
Pittsburgh, USA

lkebulad@andrew.cmu.edu

Nathan Deyak
Computer Science Dept.

Carnegie Mellon University
Pittsburgh, USA

ndeyak@andrew.cmu.edu

Zachary Weinberg
Million Concepts LLC

(formerly Carnegie Mellon University)
Pittsburgh, USA

zack@owlfolio.org

Abstract—With the growing importance of parallelism to all
aspects of computing, we believe it is important to cover the subject
in some depth throughout the curriculum, instead of reserving it
for advanced courses dedicated to the topic. This work presents
an assignment focused on parallelism, appropriate for students
with one or two years of college-level programming experience.
Students are asked to extend a single-threaded implementation
of a simple file system (SFS) to support fine-grained concurrent
access to files. We use scripted unit testing, offline consistency
checks, and static analysis, to verify both the correctness and
the achieved parallelism of students’ work. This assignment is
currently used in a second-year “introduction to computer systems”
course. Most students are completing the assignment and are
thereby gaining greater understanding of parallel programming
within the context of computer systems.

Index Terms—undergraduate, parallelism, file systems, auto-
grading

I. Introduction

In Carnegie Mellon University’s “Introduction to Computer
Systems” course [7], second-year CS students learn about
the basic components of a computer system, and how these
components support program execution. This course culminates
with an introduction to thread-level parallelism. However, prior
to our development of SFS, the only programming assignment
that involved multithreading was “proxy lab,” in which students
would develop a caching proxy for HTTP clients.

Proxy lab’s primary educational objective is to introduce
network programming. Threads are the recommended way to
handle concurrent clients, and the cache was a shared data
structure, but it was possible to get full marks on the assignment
with an unsophisticated approach to thread safety, such as one
big lock around the entire cache. Students often would conclude
(incorrectly) that parallelism is only useful for network servers,
or that coarse locking is always sufficient. The exercise left them
poorly prepared for the real concurrency-related challenges that
they would encounter later in the curriculum, especially in
upper-level algorithms and systems courses [23].

Our new simple file system (SFS) exercise, by contrast, is
intended to focus entirely on parallelism. Students receive a
complete, but not concurrent, implementation of a simple FAT-
like filesystem and are asked to make it permit concurrent
access. There are several ways to do this, but “one big
lock” is not good enough for full marks. Students must
reason about concurrency across three dimensions: data types
(e.g. concurrent access to a file and the directory can be safe),
data instances (e.g. concurrently writing to two different files
can be safe), and code segments (e.g. calls to the “allocate a
disk block” function must be serialized).

The main contributions of this work are:
• An assignment suitable for second-year students, involving

complex reasoning about concurrency
• Reuse of existing filesystem tests for automatic grading
• Instrumentation and static analysis for repeatable evalua-

tion of the parallelism achieved by student code
The remainder of this paper is organized as follows: Sec-

tion II covers related work. Section III describes the course
context of the SFS assignment. Section IV describes the SFS
file system itself, and Section V how it is used in our assignment.
Section VI describes how we evaluate student work on SFS,
Section VII analyzes the impact of SFS on student learning,
Section VIII discusses possible extensions of the assignment,
and finally Section IX concludes this work.

II. Related Work
Previous work on the use of file systems in an educational

context is limited. In the past, educators focused on tools
for learning how file systems work (e.g. [13, 19, 24]). More
recently, two papers discuss file systems designed for students
to implement or extend. SPiFS [17] and ezFS [20] both aim
to simplify a file system to its essentials, producing something
that students can be asked to implement as a short (one- or
two-week) programming assignment. These assignments also
teach students about file systems, rather than using a file system



as a vehicle for teaching something else. SFS has roughly the
same feature set as SPiFS, but has somewhat higher internal
complexity, tailored to our goal of teaching parallelism.

There is more prior work on teaching parallelism; we point
to two recent surveys on the topic [8, 12]. Our approach
to the SFS assignment was guided by earlier experiments
with presenting parallelism close to the beginning of a CS
undergraduate curriculum [9, 26]. However, we have not seen
any discussion of teaching parallelism specifically in the context
of a computer systems overview course. We can devote only
a short time to the topic (see Section III), so we cannot ask
students to carry out the same exercise several times using
different high-level frameworks for parallelism, as was done by
Czarnul, Matuszek, and Krzywaniak [10]. Adams, Brown, and
Shoop [1] and Brown et al. [6] recommend an initial focus
on high-level design patterns for parallelism. Our course’s
“bottom-up” presentation, beginning with fundamental building
blocks (threads, mutexes, semaphores, etc), is complementary
to this approach.

As parallelism is rendered ineffective by poor design choices,
and as it can introduce entire new classes of bugs, teaching
the evaluation of parallel code is just as important as teaching
the techniques for writing it in the first place. Other educators
have presented exercises specifically in modeling parallel exe-
cution [5] and in evaluating parallel code for performance [25].
The SFS exercise does not emphasize this aspect of parallel
programming, but we evaluate student work using a task-graph
model (see Section VI) which can find both serial bottlenecks
and race bugs in their code.

III. Course Background

SFS was developed for use in CMU’s version of “Introduction
to Computer Systems” [7], typically taken by undergraduates
in their third or fourth semester. It is a requirement for many
students in the School of Computer Science and a prerequisite
for many upper-level CS courses. Students are expected to have
some familiarity with the C programming language.

Over the 14-week semester, students learn the basics of
how the CPU, compiler, operating system, etc. work together
to support program execution. Concurrency appears relatively
late in the course, alongside Unix processes, asynchronous
signals, and networking. Three of the final lectures focus
specifically on parallel execution, covering its value as a tool for
performance and responsiveness, the new problems it introduces
(deadlocks, livelocks, races), how to identify shared data and
critical sections, and tools for synchronization (mutexes, reader-
writer locks, etc). The SFS exercise provides students with
practical experience in the topics covered during this part of the
course, with emphasis on how to parallelize access to complex
data structures without introducing serial bottlenecks. Because
concurrency appears late in the course, the SFS exercise has
to be kept short: students only have one week to complete it.
To make room for it, we shortened the “proxy lab” exercise
described in the Introduction, by removing the cache component.
That exercise still demonstrates the use of threading to serve

fd 0
1
2
3
4

vnode
current block
current byte

Open File
ref. count = 1
first block
size

Vnode

Fig. 1. SFS’s data structure for open files

typedef struct sfs_mem_filedesc_t
{

sfs_mem_file_t *fileEntry;
block_id startBlock;
block_id currBlock;
size_t currPos;

} sfs_mem_filedesc_t;

Fig. 2. SFS’s open-file struct

concurrent clients, but no longer involves concurrent updates
of a data structure.

IV. SFS

The Simple File System (SFS)1 is a FAT-type file system
which supports a minimal set of file operations: open, close,
read, write, seek, rename, and unlink. The semantics of
these functions are taken from POSIX, simplified to avoid
distracting students from the main educational goals of the
assignment. For example, open always opens a file for both
reading and writing, creating it if it does not exist. There is no
access control and no subdirectories (but see Section VIII-A).

SFS is implemented as a user-mode library, running within
a single user-mode process, which may or may not be
multithreaded. This architecture allows students to debug their
SFS code using the same techniques that worked for earlier
assignments. However, it also means that test programs must
be explicitly written to use the SFS library. We simplified this
task by providing a custom, multithreaded Lua [11] interpreter
that exposes the SFS API (see Section V-C).

SFS uses Unix-like file descriptors (small positive integers)
to identify open files. The in-memory data structure for open
files is illustrated in Figure 1. On the left is an array of file
descriptors, each of which may (or may not) point to an open-
file structure. An open-file structure is in the middle; it primarily
tracks the file position, plus, as an optimization, the disk block
containing the file position. (The full C struct definition is
shown in Figure 2.) Open file structures point to v-nodes that
identify the actual file on disk; an example v-node is on the
right. SFS omits all the Unix features that involve “duplication”
of file descriptors (e.g. fork and dup), so open-file objects do
not need to carry a reference count. However, each file on disk
might be opened several times at once, so the v-nodes include

1Also known internally as the Shark File System.



typedef uint32_t block_id;
typedef struct sfs_block_t
{

unsigned char type [4];
block_id prev_block;
block_id next_block;
unsigned char data[BLOCK_DATA_SIZE ];

} sfs_block_t;

Fig. 3. SFS Disk Blocks

typedef struct sfs_dir_entry_t
{

block_id first_block;
uint32_t size;
char name[SFS_FILE_NAME_SIZE_LIMIT ];

} sfs_dir_entry_t;

Fig. 4. SFS Directory Entries

reference counts and students need to reason about concurrent
access to a single file.

SFS filesystems are stored as disk images within ordinary
files on the host OS’s file system. The library also provides
an ancillary API to format and mount SFS disk images (only
one image at a time). An SFS disk image is split into 512-
byte disk blocks, regardless of the host OS’s disk block size.
The first block in the file (block 0) is the filesystem’s ‘super
block,’ containing metadata about the entire filesystem, such
as its overall size and references to the beginning of the (only)
directory and the list of free blocks.

Like the real FAT file system family, files are represented as
linked lists of blocks, using block numbers as pointers. (Block
number 0 is reused as a null pointer/end-of-list marker, since
no list ever needs to point back to the super block.) Unlike FAT,
these linked lists are stored intrusively, occupying the first 12
bytes of each disk block, as shown in Figure 3. Intrusive linked
lists are familiar to our students from an earlier assignment.

Also like the real FAT family, all metadata about a file is
stored in its directory entry. Per-file metadata is minimal, as
shown in Figure 4.

V. Programming Assignment
The educational goal of the SFS assignment is to teach

parallelism, not file system implementation. To minimize
the secondary challenge of working with the complex data
structures of a file system, and also to make it feasible to
complete the assignment in only one week, we provide students
with a “starter” implementation. It is not quite feature-complete
and lacks any code to support concurrent access. Students also
receive a test harness, a set of test “traces” (see Section V-C),
and a consistency checker for SFS’s on-disk data structures.

A. Missing Features
The SFS starter code already implements most of the basic

file system APIs: open, close, read, write, and unlink. As
a warm-up, students are asked to implement getPos2, seek,
and rename.

2get file position; separated from seek for pedagogical clarity.

In order to implement these functions, students must famil-
iarize themselves with the open-file structure (for getPos), the
chain of blocks that hold the contents of a file (for seek), and
the super block with its embedded directory (for rename). This
covers most of the starter code, and all of the parts that will
need to be updated to make the file system thread-safe.

B. Thread Safety
Having completed the missing features, students are then

asked to augment SFS with support for concurrent access
using multiple threads. This part of the exercise challenges
students to identify all of the shared data structures involved in
SFS, identify how each shared data structure can be accessed
concurrently, and then develop an approach for making all of
these concurrent accesses safe.

Students are given guidance suggesting an incremental
approach to the problem, with three levels of increasingly
fine-grained locking: first a single lock over the whole file
system, then moving to locks on individual files, and finally
to locks on individual file descriptors. (A common mistake is
to think that locking on individual files completely supersedes
locking of the overall file system; see Section VII.) We do
not suggest this, but some students also think to use reader-
writer locks, which can enable greater parallelism between read
accesses to the same file or file descriptor.

C. Test Traces
Several assignments in our class are tested using “trace files”

which describe a sequence of operations to be performed by
student-written code. For example, the “malloc lab” assignment
asks students to implement a basic heap allocator. [21] Trace
files for malloc lab describe a series of calls to malloc,
realloc, and free. Each trace file is designed to challenge
the students’ work in some way—continuing the example,
malloc lab includes traces that will cause a first-fit allocator to
waste a lot of memory on heap fragmentation. Along with the
assignment, students receive a set of trace files and a test driver
that interprets them. They are encouraged to write additional
trace files for experimentation or debugging.

In our other assignments, the trace files are not programs.
The syntax does not provide for conditionals, looping, variables,
or concurrency. SFS tests need all four of those features in
order to challenge student code with complex patterns of
concurrent requests while remaining reasonably easy to develop.
Therefore, for SFS, traces are actual programs in the Lua
scripting language [11]. This language’s interpreter is designed
to be easy to embed in a larger program and extend with library
routines that call back into the larger program.

Lua proper includes coroutines, but not true concurrent exe-
cution. There are several third-party extensions that add some
form of concurrency. We selected the “Lanes” extension [14],
which runs a separate Lua interpreter in each of several OS-
level threads. Coordination between threads is accomplished
via message passing and Linda objects [3]. Lanes’ architecture
allows us to challenge student code with truly concurrent
requests, not just interleaved requests.



local fd = check(disk.open("small"))
assert(check(disk.getPos(fd)) == 0)

local data = "hello␣world"
local written = check(disk.write(fd, data))
assert(written == #data)
assert(disk.getPos(fd) == #data)

Fig. 5. Example of an A trace

local laneproc = lanes.gen("string ,disk",
function(tid)

local fds = {}
for i = 1, N_FILES do

local fname = string.format(
"f-%d-%d", tid , i

)
fds[i] = check(disk.open(fname))

end
for i = 1, N_FILES do

assert(check(
disk.write(fds[i], CONTENTS)

) == #CONTENTS)
disk.close(fds[i])

end
return true

end
)

local lanes = {}
for i = 1, N_THREADS do

lanes[i] = laneproc(i)
end

for i = 1, N_THREADS do
check(lanes[i]:join ())

end

Fig. 6. Example of a C trace to create files

Our test driver’s embedded Lua interpreter exposes the SFS
API directly to trace scripts. They also have access to the
bulk of the Lua standard library, but not to modules that we
felt would confuse students (e.g. the coroutine library—one
form of concurrency is enough) or that could disrupt the test
driver itself (e.g. most of the built-in I/O functions). After
each test trace completes, the test driver automatically runs the
consistency checker on the SFS disk image produced by that
trace.

We provide three sets of traces to the students. Set “A” tests
the features of the starter code, as well as the missing features
that students are expected to implement, without any use of
concurrency. For example, Figure 5 shows the core of an A
trace to test whether a file can be opened and written to.

Sets “B” and “C” test concurrent operations. They are paired:
each C trace performs some sequence of concurrent operations,
and the matching B trace does the same overall operations
but in a sequential fashion. Thus, students can be confident
that if a C trace fails but the matching B trace succeeds,
there is a problem with their handling of concurrency rather
than a problem with their implementation of the operations
themselves.

Figure 6 shows the core of a C trace that creates many files
concurrently. The library function lanes.gen converts a thread

procedure into a lane factory, here given the name laneproc.
Each subsequent call to laneproc starts a new thread that
calls the function that was passed to lanes.gen. Thus, this
trace runs N_THREADS parallel threads each of which creates
N_FILES files. The complete trace continues with code to verify
that all the files were created with the expected contents. The
corresponding B trace creates all the same files, but sequentially.

The point of the C traces is to challenge student code with
a stream of operations that should be completed concurrently,
so they do not do any serialization themselves. Often, this
means there is more than one final on-disk state that qualifies
as “correct.” For example, when two threads write to a file
using the same file descriptor, we can verify that the data from
both writes appears in the file, but we cannot require either
one or the other to come first.

Many of the test traces are based on tests written for
production-grade filesystems as part of the “xfstests” test
suite [16]. Since the POSIX filesystem API is a superset of
the SFS API, tests that are correct for a production Unix
filesystem will also be correct for SFS, as long as they use
only the features of SFS. In particular, tests from xfstests
already anticipate multiple correct results. xfstests is written
in a mixture of Unix shell and C, using the full capabilities of
both languages freely. Use of a complete scripting language
for SFS traces made it much easier to port tests from xfstests
to SFS.

D. Facilitating Debugging

Because SFS is implemented as an ordinary user-mode
process, students can use standard debugging tools such as
gdb and valgrind, both of which they are encouraged to use
throughout the course. They can also instrument their code
with logging and assertions. Students can run each of the test
traces in isolation (with or without a debugger attached), write
their own test traces, or write their own C programs that are
linked against the SFS library. (Students not experienced with
Lua may find writing C programs easier.)

VI. Evaluation

We rely primarily on “autograding”—automatic evaluation
of student code against a test suite—for SFS, as we do for
the other assignments in our course. Instructors also review
student code by hand and provide individualized feedback to
the students; however, students’ grades for each assignment are
mostly determined by its test suite.

To autograde the SFS assignment, we use the same test
traces that students are given along with the starter code. The
overall grading scheme is shown in Table I. Points are split
equally between correctness and concurrency, but concurrency
is only evaluated if the student gets full marks for correctness.

The autograding system we use restricts each grading task
to a single processor. Therefore, the ratio of C trace to B
trace execution time does not effectively measure how much
concurrency is achieved. Instead, we evaluate concurrency for
SFS deterministically, using an approach similar to Tareador [4].



[0, 2] (2, 4] (4, 6] (6, 8] (8, 10] (10, 12] (12, 14] (14, 16] (16, 18] (18, 20]

20

40

60

80

100

120

140

160

180

200

Fig. 7. Concurrency Scores for Student Submissions (N=287)

TABLE I
Grade breakdown for the SFS assignment

Points possible

A trace correctness 5
B trace correctness 8
C trace correctness 7
Concurrency score 20

Total 40

Concurrency score
(capped at 20)

= 100 ×
∑︁

𝑖 ∈ C traces

(
1 − 𝑠𝑖

𝑤𝑖

)
(1)

We use a custom LLVM pass [22] that instruments the student-
modified SFS library to produce a task graph [2] of the
execution of each C trace. From these task graphs, we can
estimate the total computational work performed and the length
of the critical serial path for each trace. From these, we calculate
a concurrency score for the whole assignment according to
Equation (1), where 𝑠𝑖 is the critical path length and 𝑤𝑖 the
total computational work for C trace 𝑖. This score estimates the
concurrency that the student’s work could achieve if executed
on an ideal parallel processor.

The autograder also analyzes each task graph to detect data
races in student code [15]. When a race is detected, the tool
reports the memory address being accessed without sufficient
synchronization, along with the threads and functions involved.
Typical output is shown below.

Conflicting access address:
55a428f04230(Idx:3) in (Contech:Task) --
(4:14) and (3:14)

BB#133
145, sfs_read, sfs-disk.c:486
133, sfs_read, sfs-disk.c:458

We are continuing to improve these reports, as well as inves-
tigating how our race detector compares to other race detectors
(e.g. valgrind and LLVM’s built-in TSan instrumentation).

VII. Learning Impact
To assess the effectiveness of the new SFS assignment, we

first consider student grades from the Fall 2024 session of
Introduction to Computer Systems. Figure 7 shows a histogram
of all 287 students’ concurrency scores. A large majority of the
students got the maximum possible score, thus demonstrating a

<
25

[2
5,

50
]

(5
0,

75
]

(7
5,

10
0]

(1
00
, 1

25
]

(1
25
, 1

50
]

(1
50
, 1

75
]

(1
75
, 2

00
]

(2
00
, 2

25
]

(2
25
, 2

50
]

(2
50
, 2

75
]

(2
75
, 3

00
]

(3
00
, 3

25
]

(3
25
, 3

50
]

(3
50
, 3

75
]

(3
75
, 4

00
]

(4
00
, 4

25
]

(4
25
, 4

50
]

(4
50
, 4

75
]

>
47

5

5

10

15

20

25

30

35

40

45

Fig. 8. Additional Lines of Code in Student Submissions (N=287) (min 27,
max 681, average 223)

TABLE II
Student responses to post-assignment survey

Prompt Mean Out of

Total time spent 13 h
Concurrency score 15.8 20

Self-assessed preparation for:
Implementing APIs 3.64 5
Code analysis 3.52 5
Refactoring for Parallelism 2.81 5

deeper understanding of parallelism than what was required for
the old proxy lab. However, roughly one-fifth of the students
got the lowest possible score, indicating that they were unable
to pass the correctness tests.

Figure 8 shows a histogram of how much new code students
wrote for the assignment. By way of comparison, the starter
implementation of SFS was 615 lines long, or 945 lines
counting header files. Most students could complete the
assignment using only 150–300 lines of additional code. Longer
student submissions may have more complex locking strategies
or may simply include more comments.

After the Fall 2024 students completed the SFS assignment,
we surveyed them informally about it. We asked them to
report how long they spent on the assignment, what their final
concurrency score was, and, on a scale of 1 to 5, how well
they thought the course had prepared them for each of three
aspects of the assignment. 60 out of 287 students responded
to our questionnaire; the results are shown in Table II.

Students reported spending an average of thirteen hours
on SFS, over the course of one week, which is on par with
the workload of other assignments in this course. The mean
concurrency score for students responding to the survey is
somewhat above the mean concurrency score for the whole class
(15.8 versus 14.6); this suggests the survey results are slightly
biased toward those students who successfully completed the
first half of the assignment (i.e. full marks for correctness).

Students report themselves reasonably well prepared for
the first half of the assignment, i.e. the warm-up exercise of
implementing APIs, and identifying what will need to change
to implement safe concurrent operation. They find actually



carrying out the necessary changes to be more difficult.
Finally, we reviewed a sample of student submissions

for common mistakes. These consistently revolve around
introducing gaps in the locking strategy when passing from
one stage to the next of the incremental approach suggested in
assignment guidance (see Section V-B). For example, students
may achieve correct (but not concurrent) operation using one
big lock, and then replace that with a lock for each open file,
not realizing that they still need separate locks for updates to
data structures which are not files, such as the root directory
and the list of free blocks.

Overall, we consider the new SFS assignment an improve-
ment to our course’s presentation of parallel programming.
Most students are able to progress through the full assignment
and develop a well-performing parallel implementation of SFS.
In the near term, a priority is to understand why one-fifth of
students fail to complete the first half of the assignment, and
improve our teaching materials to cover any gaps we discover.
We are also reviewing how the starter code might be refactored
to reduce inessential cognitive load on students.

VIII. Possible Extensions

The SFS assignment concentrates on one aspect of parallel
programming: safe concurrent access to shared data. While
there are other aspects that would also be valuable to address
early in the undergraduate curriculum, such as understanding
the difference between inherently parallel and inherently serial
algorithms, and how to efficiently divide up work among
parallel tasks to minimize communication overhead, we feel
that these are complex enough to deserve exercises devoted to
them.

The SFS assignment is still quite new and we have kept
it minimal for the time being, but we have considered a
few possibilities for future additions. Sticking to the theme
of safe concurrent access to shared data, these might add
interesting complications to the core concurrency challenge,
or give students a glimpse of what awaits them in upper-level
systems courses.

A. Directories

As provided to students, SFS does not have any support
for subdirectories. The “root directory” of the file system is
directly embedded in the super block; it cannot even grow into
additional blocks, as files can. However, we left room for a
growable root directory and for the addition of subdirectories.
We see this primarily as “teaser” material for upper-level
systems courses, to be offered as an optional exercise for
students doing well in the class. Students would need to modify
the SFS open API, add the mkdir API, and define a new on-disk
data structure for the contents of a directory, but they would not
need to change existing on-disk data structures. Path walking
concurrent with directory creation and deletion is a challenging
algorithm to implement, but it is a natural progression from
what students already accomplish in the lab. We tested and
prototyped the necessary changes, and left comments in the

code pointing out the possibility, even though it is not required
in the current version of the assignment.

B. Tree-Structured File Allocation

In SFS, a file is identified by its directory entry, which
directly holds the file’s size and the number of its first block
(as shown in Figure 4). The rest of the file can be located
by walking a doubly-linked list embedded in each block (as
shown in Figure 3). This is simple and straightforward for
students to understand. Sequential reading and writing is made
efficient by caching the current block pointer in the open-
file structure. However, seek operations take time and disk
accesses proportional to the size of the change in the current
file position.

File systems that offer 𝑂 (1) random access to files use
completely different on-disk data structures. For example, the
classic BSD Fast File System [18] has each directory entry point
to a skewed tree, consisting of the inode and the indirect blocks,
which in turn points to the file’s data blocks. Replacing SFS’s
intrusive linked lists with FFS-style skewed trees would alter
almost every aspect of the on-disk data structure and require
extensive changes to its logic as well. We have prototyped this
change ourselves, but we currently think it is not a feasible
challenge for students at the level of our course. It might be
an interesting exercise for more advanced students, perhaps in
an upper-level data structures or operating systems course.

IX. Conclusion and Future Work

This work presented a programming assignment which
trains and assesses students’ understanding of concurrent
access to shared data, using a simple file system as its
vehicle. We also showed a technique based on compile-time
instrumentation for deterministically scoring the performance
of parallel code without requiring a multi-core autograding
system. This technique is also capable of identifying data races
in student code. Finally, we experiment with a widely used
scripting language (Lua) as a means to express concurrency in
test cases for autograding.

We plan on continuing to improve both the SFS assignment
and the associated course material, particularly our lectures
on parallel execution, as we better identify where students are
now struggling and where they are left with misconceptions.
We are also working on improving the autograder to ensure
consistency in the performance metrics and to provide more
helpful output when races are detected.

Acknowledgments

We want to thank Michael Melville and CMU’s Eberly
Center for their support through IRB approvals and educational
analysis. We are also grateful to the teaching assistants who
have managed the assignment and its testing, especially Parth
Sangani and Caleb Oh. Finally, we want to thank all our students
for their work, perseverance, and feedback as we continue to
improve the course and this assignment.



References
[1] J. Adams, R. Brown, and E. Shoop, “Patterns and exemplars:

Compelling strategies for teaching parallel and distributed computing
to cs undergraduates,” in Proceedings of the 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing
Workshops and PhD Forum, ser. IPDPSW ’13. USA: IEEE
Computer Society, 2013, p. 1244–1251. doi:10.1109/IPDPSW.2013.
275. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=
c8fbb994cb982f5f7406ab51bf1e2df3aacfaac3

[2] V. S. Adve and R. Sakellariou, “Compiler synthesis of task graphs
for parallel program performance prediction,” in Proceedings of
the 13th International Workshop on Languages and Compilers for
Parallel Computing-Revised Papers, ser. LCPC ’00. London, UK, UK:
Springer-Verlag, 2001, pp. 208–226. doi:10.1007/3-540-45574-4_14.
https://www.academia.edu/download/73665713/lcpc00.pdf

[3] S. Ahuja, N. Carriero, and D. Gelernter, “Linda and friends,” Computer,
vol. 19, no. 8, pp. 26–34, 1986. doi:10.1109/MC.1986.1663305

[4] E. Ayguadé, R. M. Badia, D. Jiménez, J. R. Herrero, J. Labarta,
V. Subotic, and G. Utrera, “Tareador: a tool to unveil parallelization
strategies at undergraduate level,” in Proceedings of the Workshop
on Computer Architecture Education, ser. WCAE ’15. New York,
NY, USA: Association for Computing Machinery, 2015. doi:10.1145/
2795122.2795123. https://citeseerx.ist.psu.edu/document?repid=rep1&
type=pdf&doi=f68ba46f377c7dd52ce0953cf4a48583139e8e73

[5] G. E. Blelloch, Y. Gu, and Y. Sun, “Teaching parallel algorithms
using the binary-forking model,” in 2024 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
2024, pp. 346–351. doi:10.1109/IPDPSW63119.2024.00080. https:
//www.cs.ucr.edu/~yihans/papers/2024/EduPar24/edupar-bf.pdf

[6] R. A. Brown, J. C. Adams, C. Ferner, E. Shoop, and A. B.
Wilkinson, “Teaching parallel design patterns to undergraduates in
computer science,” in Proceedings of the 45th ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’14. New
York, NY, USA: Association for Computing Machinery, 2014, p.
547–548. doi:10.1145/2538862.2538875. https://www.academia.edu/
download/107497746/pl1365-brown.pdf

[7] R. E. Bryant and D. R. O’Hallaron, “Introducing computer systems
from a programmer’s perspective,” in Proceedings of the Thirty-second
SIGCSE Technical Symposium on Computer Science Education, ser.
SIGCSE ’01. New York, NY, USA: ACM, 2001, pp. 90–94.
doi:10.1145/364447.364549. http://www.csapp.cs.cmu.edu/public/pieces/
sigcse01.pdf

[8] J. A. Carneiro Neto, A. J. Alves Neto, and E. D. Moreno, “A systematic
review on teaching parallel programming,” in Proceedings of the 11th
Euro American Conference on Telematics and Information Systems, ser.
EATIS ’22. New York, NY, USA: Association for Computing Machinery,
2022. doi:10.1145/3544538.3544659

[9] D. J. Conte, P. S. L. de Souza, G. Martins, and S. M. Bruschi, “Teaching
parallel programming for beginners in computer science,” in 2020 IEEE
Frontiers in Education Conference (FIE), 2020, pp. 1–9. doi:10.1109/
FIE44824.2020.9274155

[10] P. Czarnul, M. Matuszek, and A. Krzywaniak, “Teaching
high–performance computing systems – a case study with par-
allel programming apis: Mpi, openmp and cuda,” in Computa-
tional Science – ICCS 2024: 24th International Conference, Malaga,
Spain, July 2–4, 2024, Proceedings, Part VII. Berlin, Heidelberg:
Springer-Verlag, 2024, p. 398–412. doi:10.1007/978-3-031-63783-4_29.
https://www.iccs-meeting.org/archive/iccs2024/papers/148380387.pdf

[11] L. H. de Figueiredo, R. Ierusalimschy, and W. Celes Filho, “The
design and implementation of a language for extending applications,” in
Proceedings of XXI Brazilian Seminar on Software and Hardware, 1994,
pp. 273–283. https://www.lua.org/semish94.html

[12] T. de Jesus Oliveira Duraes, P. Sergio Lopes de Souza, G. Martins,
D. Jose Conte, N. Garcia Bachiega, and S. Mazzini Bruschi, “Research
on parallel computing teaching: state of the art and future directions,”
in 2020 IEEE Frontiers in Education Conference (FIE), 2020, pp. 1–9.
doi:10.1109/FIE44824.2020.9273914

[13] S. Diesburg and A. Berns, “Fileshark: A graphical file system vi-
sualization tool,” in Proceedings of the 51st ACM Technical Sym-
posium on Computer Science Education, ser. SIGCSE ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p. 1359.
doi:10.1145/3328778.3372648

[14] A. Kauppi and B. Germain, Lua Lanes—multithreading in Lua, 2007.
https://lualanes.github.io/lanes/

[15] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, p. 558–565, Jul. 1978. doi:10.
1145/359545.359563

[16] Z. Lang, D. J. Wong, C. Brauner et al., “The fs qa suite,” 2001–present.
https://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git/about/

[17] R. Marmorstein, “Spifs: short project instructional file system,”
J. Comput. Sci. Coll., vol. 36, no. 3, p. 111–120, Oct. 2020.
https://www.ccsc.org/publications/journals/EA2020.pdf#page=111

[18] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry, “A fast file
system for unix,” Transactions on Computer Systems, vol. 2, no. 3, pp.
181–197, 1984. doi:10.1145/989.990

[19] B. Mechtly, F. Helbert, D. Cox, and Z. Hastings, “The visible
file system: an application for teaching file system internals,”
J. Comput. Sci. Coll., vol. 34, no. 4, p. 24–31, Apr. 2019.
https://www.ccsc.org/publications/journals/CPSW2019.pdf#page=24

[20] E. Nieh, Z. Zhang, and J. Nieh, “ezfs: A pedagogical linux file system,”
in Proceedings of the 56th ACM Technical Symposium on Computer
Science Education, ser. SIGCSE ’25. New York, NY, USA: Association
for Computing Machinery, 2025. doi:10.1145/3641554.3701884

[21] B. P. Railing and R. E. Bryant, “Implementing malloc: Students and
systems programming,” in Proceedings of the 49th ACM Technical Sym-
posium on Computer Science Education, ser. SIGCSE ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 104–109.
doi:10.1145/3159450.3159597

[22] B. P. Railing, E. R. Hein, and T. M. Conte, “Contech: Efficiently gen-
erating dynamic task graphs for arbitrary parallel programs,” ACM
Trans. Archit. Code Optim., vol. 12, no. 2, pp. 25:1–25:24, Jul. 2015.
doi:10.1145/2776893

[23] R. K. Raj, C. J. Romanowski, J. Impagliazzo, S. G. Aly, B. A. Becker,
J. Chen, S. Ghafoor, N. Giacaman, S. I. Gordon, C. Izu, S. Rahimi, M. P.
Robson, and N. Thota, “High performance computing education: Current
challenges and future directions,” in Proceedings of the Working Group
Reports on Innovation and Technology in Computer Science Education,
ser. ITiCSE-WGR ’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 51–74. doi:10.1145/3437800.3439203

[24] L. Thompson, J. Clarke, and R. Sheehan, “edufuse a visualizer for user-
space file systems,” in Proceedings of the 2020 ACM Conference on
Innovation and Technology in Computer Science Education, ser. ITiCSE
’20. New York, NY, USA: Association for Computing Machinery, 2020,
p. 549–550. doi:10.1145/3341525.3393989

[25] S. Vargas-Pérez, “Teaching performance metrics in parallel computing
courses,” in 2024 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2024, pp. 385–390. doi:10.1109/
IPDPSW63119.2024.00086

[26] L. B. A. Vasconcelos, F. A. L. Soares, P. H. M. M. Penna, M. V. Machado,
L. F. W. Góes, C. A. P. S. Martins, and H. C. Freitas, “Teaching parallel
programming to freshmen in an undergraduate computer science program,”
in 2019 IEEE Frontiers in Education Conference (FIE), 2019, pp. 1–8.
doi:10.1109/FIE43999.2019.9028566

https://doi.org/10.1109/IPDPSW.2013.275
https://doi.org/10.1109/IPDPSW.2013.275
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c8fbb994cb982f5f7406ab51bf1e2df3aacfaac3
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c8fbb994cb982f5f7406ab51bf1e2df3aacfaac3
https://doi.org/10.1007/3-540-45574-4_14
https://www.academia.edu/download/73665713/lcpc00.pdf
https://doi.org/10.1109/MC.1986.1663305
https://doi.org/10.1145/2795122.2795123
https://doi.org/10.1145/2795122.2795123
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f68ba46f377c7dd52ce0953cf4a48583139e8e73
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f68ba46f377c7dd52ce0953cf4a48583139e8e73
https://doi.org/10.1109/IPDPSW63119.2024.00080
https://www.cs.ucr.edu/~yihans/papers/2024/EduPar24/edupar-bf.pdf
https://www.cs.ucr.edu/~yihans/papers/2024/EduPar24/edupar-bf.pdf
https://doi.org/10.1145/2538862.2538875
https://www.academia.edu/download/107497746/pl1365-brown.pdf
https://www.academia.edu/download/107497746/pl1365-brown.pdf
https://doi.org/10.1145/364447.364549
http://www.csapp.cs.cmu.edu/public/pieces/sigcse01.pdf
http://www.csapp.cs.cmu.edu/public/pieces/sigcse01.pdf
https://doi.org/10.1145/3544538.3544659
https://doi.org/10.1109/FIE44824.2020.9274155
https://doi.org/10.1109/FIE44824.2020.9274155
https://doi.org/10.1007/978-3-031-63783-4_29
https://www.iccs-meeting.org/archive/iccs2024/papers/148380387.pdf
https://www.lua.org/semish94.html
https://doi.org/10.1109/FIE44824.2020.9273914
https://doi.org/10.1145/3328778.3372648
https://lualanes.github.io/lanes/
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git/about/
https://www.ccsc.org/publications/journals/EA2020.pdf#page=111
https://doi.org/10.1145/989.990
https://www.ccsc.org/publications/journals/CPSW2019.pdf#page=24
https://doi.org/10.1145/3641554.3701884
https://doi.org/10.1145/3159450.3159597
https://doi.org/10.1145/2776893
https://doi.org/10.1145/3437800.3439203
https://doi.org/10.1145/3341525.3393989
https://doi.org/10.1109/IPDPSW63119.2024.00086
https://doi.org/10.1109/IPDPSW63119.2024.00086
https://doi.org/10.1109/FIE43999.2019.9028566

	Introduction
	Related Work
	Course Background
	SFS
	Programming Assignment
	Missing Features
	Thread Safety
	Test Traces
	Facilitating Debugging

	Evaluation
	Learning Impact
	Possible Extensions
	Directories
	Tree-Structured File Allocation

	Conclusion and Future Work

